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1. INTRODUCTION

Standard Monte Carlo simulations of phase transitions employing the
canonical ensemble and local algorithms are severely hampered by slowing
down of the pseudo-dynamics.(1) At a continuous phase transition the
physical origin of critical slowing down is the divergence of the spatial
correlation length £.(2,3) This implies large autocorrelation times, t oc £z,
with a dynamical critical exponent z = 2, and hence greatly enhanced
statistical errors, e oc v/r. For d-dimensional systems of finite size V=Ld ,
£ has to be replaced by min{E, L}, such that in the immediate vicinity of
the transition point r oc Lz for a finite system. Here the development of
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We investigate the dynamical behavior of the recently proposed multibondic
cluster Monte Carlo algorithm in applications to the three-dimensional q-state
Potts models with q = 3, 4, and 5 in the vicinity of their first-order phase transi-
tion points. For comparison we also report simulations with the standard multi-
canonical algorithm. Similar to the findings in two dimensions, we show that
for the multibondic cluster algorithm the dependence of the autocorrelation time
T. on the system size V is well described by the power law i oc va, and that the
dynamical exponent a is consistent with the optimal random walk estimate
a = 1. For the multicanonical simulations we obtain, as expected, a larger value
of a = 1.2.
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non-local cluster or multigrid algorithms with dynamical critical exponents
z << 2 has basically solved the problem in many applications.(4)

At a first-order phase transition(5) of models with a finite number of
states per spin the correlation length stays finite at the transition point. In
this case the physical origin of the problem of slowing down is due to phase
coexistence. For large but finite systems in the canonical ensemble this
is usually reflected by a pronounced double-peak structure of the energy
(and/or magnetization) distribution, Pcan. The minimum region between
the two peaks corresponds to mixed phase configurations which are
strongly suppressed by an additional interface energy, Pmin/Pmax oc
exp(— 2 a L d - l ) , where a is the (reduced) interface tension and L d - l is the
cross-section of the system. To achieve thermal equilibrium and therefore
the proper relative weight of the pure phases, the system must pass many
times through the strongly suppressed mixed phase configurations, which
results in a super-critical slowing down with exponentially divergent auto-
correlation times, T oc exp(2aLd-1).(6)

One possible solution of this problem was recently discussed by Berg
and Neuhaus(7,9) who proposed to perform the simulations in an auxiliary
multicanonical ensemble which is related to the original canonical formula-
tion by reweighting.(10) The reweighting factor is determined iteratively in
such a way that the multicanonical energy distribution is flat between the
two peaks of the canonical distribution. Then, invoking a simple random
walk argument in energy space, one expects that the growth of autocorrela-
tion times with the system size follows a much weaker power-law, T oc Vx,
where oc is the analog of the dynamical critical exponent z at a continuous
transition. Actual numerical simulations of two-dimensional (q-state Potts
models obtain values for a = 1.3,(8,11,12) despite the expected a = 1 predicted
by the random walk picture. These simulations have been performed with
the standard local Metropolis or heat-bath algorithms, since the multi-
canonical reweighting procedure implicitly introduces non-local inter-
actions such that it is not immediately obvious how to adapt, say, cluster
algorithms to this situation.

In a recent letter(12) two of us proposed a solution to this problem,
called the multibondic cluster algorithm. The idea is first to treat the cluster
decomposition and then second to apply the reweighting concept to the
bond degrees of freedom instead of to the energy. In applications to the
two-dimensional q-state Potts model with q = 7, 10, and 20 it has been
demonstrated that, with this algorithm, the optimal random walk exponent
a= 1 can be obtained.(12)

The purpose of the present note is to extend this investigation to three
dimensions by performing extensive simulations with both the multibondic
and multicanonical algorithms in order to make a thorough comparison.
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As an application we chose the three-dimensional q-state Potts models(13)

with q = 4 and 5, which are both known to exhibit quite a strong tem-
perature driven first-order phase transition.(14) With the multibondic algo-
rithm our results in three dimensions are also consistent with the optimal
random walk prediction, a= 1, while with the multicanonical algorithm we
obtain a larger value of a = 1.2. A few data are also given for the much
weaker first-order phase transition of the three-dimensional 3-state Potts
model which has many applications in condensed matter physics(14) and,
having the symmetry of the center group of SU(3), is also of considerable
interest in high-energy physics.(15) Our results clearly support the claim
that for future high-precision studies of this model the multibondic algo-
rithm is the perfect tool.

The rest of the paper is organised as follows. In Section 2 we briefly
recall the model and discuss the simulation details. In Section 3 we intro-
duce the various autocorrelation times we have measured in this study. The
results are presented in Section 4, and in Section 5 we close with our con-
clusions and a few final comments.

2. MODEL AND SIMULATION

The (q-state Potts model is defined by the canonical partition func-
tion(13,l4)

where B = J/kBT is the inverse temperature in natural units, the spins ai, are
located at the sites i of a simple cubic lattice of size v=L3, <ij> denote
nearest-neighbor pairs, and daiai is the standard Kronecker delta symbol.
As usual we employed periodic boundary conditions in all three space
directions.

In multicanonical simulations one simulates the auxiliary partition
function

where e - f e ( E } is an appropriate reweighting factor chosen in such a way
that the multicanonical energy distribution Pmuca .(E) = P c a n ( E ) e - f e ( E ) is
constant between the two peaks of the canonical energy distribution
Pcan(£). Even if we start without any explicit input information on the
form of Pcan(£), the reweighting factor e - f e ( E ) can be constructed quite fast
by an automatic iteration procedure which, at any rate, takes only a minor
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Table I. Parameters of the Multicanonical (muca) and Multibondic (mubo)
Simulations of the 3D q-State Potts Model"

9

3

4

5

L

10
18

8
10
12
14
16
20
24
30

6
8
10
12
14
16
20
20

Bo

0.550500
0.550574

0.627939
0.628215
0.628378
0.628389
0.628534
0.628570
0.628613
0.628542

0.686965
0.688392
0.688802
0.689101
0.688676
0.689178
0.689150
0.689150

Nmuca

7
35

7
10
20
40
80
100
100

3
12
28
45
135
119
229

/Ed/

1581
9226

665
1304
2258
3597
5372
10536
18195

238
574
1118
1942
3089
4620
9027

\E0\

1821
10439

1006
1920
3329
5279
7855
15228
26321

458
1074
2085
3580
5672
8380
16544

Nmuba

7

26

7
10
20
30
50
100
100
100

7
21
34
55
99
143

394

B

686
3903

314
612
1057
1680
2511
4920
8490
16630

120
286
562
973
1538
2303

4476

B0

769
4388

461
903
1555
2454
3692
7095
12310
23918

224
532
1035
1772
2816
4141

8206

N

100000
100000

100000
100000
100000
100000
100000
100000
40000

• 40000

100000
100000
100000
100000
100000
100000
34000
22000

fraction of the total simulation time. Once e f'(E) was estimated, we
reweighted Pcan(E) to the temperature where the two peaks of the canoni-
cal energy distribution are of equal height and determined the two peak
locations E0 and Ed. Here the subscripts o and d stand short for the
ordered and disordered phase, respectively. In the production runs we then
used this temperature and set e~

f<(E) oc l/0>cm(E) for E0^E^Ed and
e- / e(£)_l outside this range. The values for E0 and Ed as well as the
inverse simulation temperature B0 for each lattice size can be found in
Table I, where information on the statistics is also given. For the update
of the spins CT, we used the heat-bath algorithm.

In multibondic simulations(12) one first rewrites the partition function
(1) into the equivalent Fortuin-Kasteleyn representation(16) and then
simulates, similar to (2), an auxiliary partition function

' B70 is the inverse simulation temperature, Nmuca and Nmubo are the number of sweeps between
measurements, \E, d \ and Bo d are the maxima locations of the canonical energy and bond
distributions Pcan(£) and Pcan(B) (entering in the definition of flip times and determining
the reweighting range), and N is the number of measurements.



and e / /><B) is the multibondic reweighting factor chosen in such a way that
the multibondic bond distribution Pm u b o(B) is constant between the two
peaks of the canonical bond distribution P c a n (B) . Here

is the total number of active bonds with bij= 1. The update of the bond
variables bij and spins ai, proceeds basically as in the standard Swendsen-
Wang cluster algorithm:(17)

1. If ai=aj, set bij = 0 as usual. If cr, = (T/, then assign new values
bnew= 0 and 1 with relative probabilities e~fb(B'): pe->>'b(B' +1),
where B' = B-b°ld.

2. Identify clusters of spins that are connected by "active" bonds
(bij=\\

3. Draw a random value !...</ independently for each cluster and
assign this value to all spins in a cluster.

The only difference is that, when testing whether a proposed new value for
b,j can be accepted, the reweighting factor e~fh(B} also has to be taken into
account.

By differentiating In Z with respect to B, where Z is given as in (1) or
(3) with e ~ f k = 1, it is easy to see that

For temperatures below the transition temperature this implies that the
peak locations E,, and B0 of the canonical energy and bond distributions
are related by -E,,x(\ + \/p) B0. For temperatures above the transition
temperature the subscript o has simply to be replaced by d. Inserting
B,=0.6285 for q = 4 (B1= 0.6892 for q = 5) in (4) we find p=0 .875 and
\ + 1 / p = 2 . 1 4 ( p = 0 . 9 9 2 and 1 + 1/p=2.01 for q = 5), which explains the
factors between £„ and #„, or Ed and Bd, in Table I.

This observation suggests that close to the first-order transition point,
B=Bt,, the double-peak structures of P c a n ( E ) and P c a n ( B ) should also look
very similar when plotted versus — £ and (1 + 1/P) B, respectively. In fact,

where the additional degrees of freedom btj = 0 or 1 live on the bonds of the
lattice,

Multibondic Algorithm in 3D q-State Potts Model 1281
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for the two-dimensional models the two curves turned out to be almost
identical.(12) A plot of the two distributions for the three-dimensional
model with q = 4 and L = 20 as obtained in the multibondic simulation by
reweighting is shown in Fig. l(b). Here the differences turn out to be a little
more pronounced than in two dimensions. This becomes more obvious
when comparing directly the histograms of the multibondic simulation in
Fig. l(a). While the bond histogram is approximately flat (as it should be,
of course, by construction of the multibondic weights), the energy histogram
develops a small peak on the disordered side. This effect is, however, so
small that the knowledge of one reweighting factor, e~fe(E] or e~fh(B}, still
allows to construct the other with sufficient accuracy.

To facilitate an easy comparison of the performance of the multi-
bondic and multicanonical update algorithms we chose in both simulations

Fig. 1. (a) Bond and energy histograms in multibondic simulations for q = 4, L = 20, and
B = B0 = 0.62857. The bond histogram is plotted versus (1 + 1 / p ) B with p = exp(B)- 1. In (b)
these histograms are reweighted to the canonical ensemble, exhibiting in both observables the
characteristic double-peak structure at a first-order phase transition.



where nk denotes the number of spins with "orientation" a = Ke[l,q] in
one configuration. Based on first rough estimates of autocorrelation times
(see below) we performed Nmubo respectively Nmuca sweeps between each of
the measurements recorded in the time-series file, which were used for a
later refined analysis of autocorrelation times. We furthermore stored all
Nmubo (or Nmuca) x 100000 measurements of E, B, and M in energy, bond,
and magnetization histograms. A more detailed overview of the simulation
parameters is given in Table I.

3. AUTOCORRELATIONS

In order to evaluate the relative performance of the new multibondic
and old multicanonical algorithm we shall focus in this paper on an
analysis of their dynamical behavior as a function of the system size. We
have, therefore, measured several autocorrelation times which will be
always given in units of lattice sweeps.

A very intuitive definition employed in most previous multicanonical
studies is the so-called flip (or in this context more properly diffusion) time,
Tflip, where one simply counts the average number of update sweeps that
are needed to travel from E<E0 to E > Ed and back. More precisely, by
comparison with the predictions of a canonical two-state model, this
average number of update sweeps is identified with 4rflip. In our simula-
tions the cuts E0 and Ed used in this definition were chosen to be identical
to the reweighting boundaries given in Table I. Similarly, by replacing E
with B or M, we can also define the flip times rflip or Tflip. For accurate
measurements it is important to test after every sweep if the system has
passed one of these cuts. Performing the test only every Nmuca or Nmubo

sweep, we observed considerably larger values for Tflip, simply because some
of the cut crossings then can be missed. While this definition is very
intuitive, its obvious drawback is the dependence on the adjustable cut
parameters which introduces some arbitrariness.

the same simulation temperatures Bo. Below we report extensive simula-
tions for q = 4 on lattices of size L = 8, 10, 12, 14, 16, 20, 24, and 30 (only
multibondic), and for q = 5 with L = 6, 8, 10, 12, 14, 16, and 20. In addition
we have studied for q - 3 the two lattice sizes L = 10 and 18 to get an over-
view of the general trend as a function of q. For all but the largest lattices
we recorded in a time-series file 100 000 measurements of the energy E, the
number of active bonds B, and the magnetization M, defined as

1283Multibondic Algorithm in 3D q-State Potts Model



where a2
e is the canonical variance, a2 = < E 2 > — < E > 2 .

From (9) it is clear that for k = ftexp with f=6...8 the signal of
Ae(k) has dropped to about 1/1000 of its value at k = 0 (where it is by
definition unity). For larger time separations the numerical estimates of
Ae(k) become quite noisy and the sum in (10) is therefore usually carried
self-consistently only to kmax = f T i n t , with/ = 6...8. Since in any meaningful
simulation the number of measurements N is much larger than T"', the
correction factor (1 —k/N) in (10) can safely be neglected.

Also in multicanonical or multibondic simulation this would be
precisely the way to proceed if multicanonical or multibondic expectation
values would be of interest. Usually, however, one is only interested in
canonical observables which can be recovered as ratios of multicanonical
or multibondic expectation values, e.g.,

where ae is a constant and rexp is the exponential autocorrelation time. As
far as statistical errors of static quantities are concerned the so-called
integrated autocorrelation time is more relevant. It is defined as

and can be shown to enter in the error estimate Ee of mean values over N
measurements, e.g., E = ENk = 1 Ek/N, as

where ( E i + k ; Ei> = <Ei+k Ei> — < E i + k > < E i > is the time-displaced vari-
ance of the energy. For large time separations one expects an exponential
decay

A more objective measure of the performance is therefore the more
formally defined autocorrelation time which in a canonical simulation
would be derived for, e.g., the energy from the autocorrelation function

Carroll et al.1284
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where the expectation values <...>muca and <...>mubo are computed with
Zmuca and Zmubo, respectively, and we = efe and wb = efb are the inverse
reweighting factors. In analogy with (11) we therefore define an effective
autocorrelation time Tef through

where, as in (11), az
e is the canonical variance.

Technically we have now two possibilities to estimate ee and thus rf.
First, we can apply standard jack-knife blocking techniques(18) to directly
estimate the statistical error of the estimator for <Ewe>m u c a/<we>m u c a or
(Ew b) m ubo/(w i>mubo (which is simply the ratio of the mean values of Ewe

and we, or Ewb and wh). In the following this determination will be
denoted by efck and rfck. The second, more elaborate method is to apply
error propagation to (12). The result reads(91)

where T ' i n t , is the obvious generalization of the definition (10), w stands
generically for we or wb, and the subscript "mu" for "muca" or "mubo."
The statistical error computed according to (14) will be denoted by ef and
the resulting effective autocorrelation time by T'ff. It should be emphasized
that conceptually Teff and r^ack are technically only alternative ways to
estimate one and the same quantity. Any difference in the results must
therefore be taken as an indication of statistical errors and systematic
biases (which can be caused by the choice of the self-consistent cut-off in
the determination of the integrated autocorrelation times and the number
of blocks in the jack-knife procedure). The flip times Tflip, on the other, are
conceptually differently defined and can therefore not be expected to coin-
cide with Tjack or tf.

4. RESULTS

Let us begin with the more extensively studied cases of q = 4 and 5.
The measured autocorrelation times of E are collected in Tables II and IV.
As an illustration how teff is computed we show in Table III for q = 4 also
the various variances, covariances and expectation values needed to
evaluate (14). Since E and B are strongly correlated (recall Eq. (6)), the
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Table II. Autocorrelation Times in Multicanonical and Multibondic
Simulations for q = 4a

D = 3, q = 4, multicanonical

L

8
10
12
14
16
20
24

Tint
51(5)
99(13)

167(20)
264(20)
375(19)
870(130)

1460(538)

_int
T Ew;Ew

27(1)

41(2)
58(2)
87(2)

118(3)
196(5)
274(15)

Tint

13(1)

25(1)
44(1)
69(2)

102(2)
174(4)
253(9)

Tint

17(1)
29(1)
47(2)
73(2)

107(2)
179(4)
259(12)

Teff

61(3)
121(6)
228( 1 1 )
412(19)
591(26)

1365(49)
1932(595)

jack
: e

44
107
300
386
647

1835
4353

Tflip^

105(3)
213(4)
406(9)
644(9)

1063(19)
2262(44)
5353(456)

D = 3, q = 4, multibondic

L Tint
~E;E

-int
TEw;Ew Tint Tint ?f Tfck T^*

8
10
12
14
16
20
24
30

L

8
10
12
14
16
20
24
30

71(5)
95(10)

148(12)
229(24)
303(27)
584(41)

1008(427)
2730(1293)

Tint
1 B;B

69(5)
93(10)

146(12)
225(23)
299(27)
578(41)

1005(427)
2723(1364)

39(2)
62(3)
81(3)

105(3)
131(3)
206(5)
280(10)
340(15)

Tint
TBw;Bn

40(2)
62(3)
81(3)

104(3)
131(3)
206(5)
280(10)
340(15)

9(1)
38(2)
53(2)
74(2)

100(4)
166(4)
239(8)
334(13)

*!"',,•

9(1)
38(2)
53(2)
74(2)

100(4)
166(4)
239(8)
334(13)

18(1)
50(3)
66(3)
87(3)

113(3)
183(4)
256(11)
324(13)

Tin(
TB»;.r

18(1)

50(3)

66(3)
87(3)

113(3)
183(4)
256(10)
324(13)

77(5)
107(8)
189(34)
316(21)
488(65)
940(58)

1607(473)
3085(173)

rf

75(5)
107(7)
189(34)
317(21)
490(64)
941(58)

1611(449)
3081(172)

63
103
205
326
498

1009
1471
4972

rj«ck

62
102
204
327
498

1009
1479
4978

119(2)
181(3)
298(4)
468(6)
655(10)

1298(18)
2434(82)
5429(238)

*?"

106(2)
177(3)
286(4)
451(6)
649(10)

1281(18)
2418(83)
5429(237)

various autocorrelation times of E and B are all indistinguishable within
error bars. As an example we have included in Table II for the multibondic
simulations also the autocorrelation times of B. We see that in most cases
the corresponding numbers are, in fact, just identical, including the statisti-
cal error estimates. Also the autocorrelation times rm of the magnetization

" Error estimates are obtained with the jack-knife method on the basis of 100 blocks for
L = 8-20, 40 (muca) resp. 50 (mubo) blocks for L = 24, and 40 blocks for L = 30.
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Table III . Variances, Covariances, and Expectation Values of the
Multibondic Simulations for q=4, Which Enter the Effective

Error Estimate Eeff [cf. Eq. (14)]"

D = 3, q = 4, multibondic

L

8
10
12
14
16
20
24
30

<.Ew;Ew)
<£>v>2

0.11208(70)
0.2429(25)
0.4471(52)
0.6555(76)
1.047(14)
1.561(22)
2.175(71)
2.555(91)

(w; w>
< w > 2

0.05993(28)
0.15050(89)
0.3418(26)
0.5422(42)
0.9210(87)
1.433(15)
2.038(56)
2.328(65)

(Ew, w)
< £ W > < H > >

0.07032(46)
0.1799(16)
0.3759(37)
0.5790(57)
0.961(11)
1.468(18)
2.077(62)
2.381(73)

<Ewy

O> V

1.7495(42)
1.7377(42)
1.7339(40)
1.7315(40)
1.7447(38)
1.7395(38)
1.7654(68)
1.549(15)

"I

0.09751(67)
0.08363(70)
0.07731(71)
0.07331(83)
0.06988(92)
0.06992(94)
0.0615(22)
0.0811(18)

Fett
be

0.00462(13)
0.00423(15)
0.00383(45)
0.00393(14)
0.00369(25)
0.00363(13)
0.0070(11)
0.01119(32)

£jack

0.00417
0.00415
0.00398
0.00399
0.00373
0.00376
0.00673
0.01420

Table IV. Autocorrelation Times in Multicanonical and Multibondic
Simulations for q = 5"

D = 3, q = 5, multicanonical

L

6
8

10
12
14
16
20

*%S

32(4)
74(6)

149(10)
268(19)
738(55)
465(16)

1621(252)

Tinl
TEw; Eir

16(1)
29(1)
47(1)
73(2)

112(2)
113(2)
271(9)

C',,.

7(1)
19(1)
36(1)
60(1)

151(4)
116(2)
351(15)

*£».;».

9(1)
21(1)
38(1)
62(2)

125(3)
111(2)
304(19)

*?

38(3)
104(4)
234(7)
467(13)

1027(27)
1467(62)
3095(919)

^jack

36
96

245
552

1072
1621
4056

tnip

70(2)
183(4)
391(7)
736(16)

1140(11)
1877(25)
3828(122)

D = 3, g = 5, multibondic

L

6
8

10
12
14
16
20

'!?!*

60(3)
127(9)
220(16)
381(21)
535(22)
588(25)

2059(256)

Tinl
rE,r; En'

47(2)
77(2)
105(3)
166(8)
130(3)
208(5)
237(7)

T1™,,.

24(1)
47(1)
69(2)

115(3)
168(4)
174(4)
224(7)

-inl
' Eiv; it

37(2)
61(2)
84(2)

137(4)
143(5)
188(4)
224(7)

rf

64(4)
156(8)
324(16)
630(120)

1065(136)
1636(67)
3149(120)

^jack

62
147
285
548

1559
2057
4109

Tnip

118(2)
250(5)
473(7)
821(14)

1300(21)
1961(21)
4653(154)

" CT2, is the canonical variance of the energy. The number of jack-knife blocks for the computa-
tion of ef* was 100 for L = 8 - 20, 50 for L = 24, and 40 for L = 30.

" Error estimates are obtained with the jack-knife method on the basis of 100 blocks
(40 blocks for L = 20).



Fig. 2. Comparison of the flip times rjl lp of the energy in multibondic (mubo) and multi-
canonical (muca) simulations on a double logarithmic scale. The straight lines show fits
according to the Ansatz (15). The resulting exponents oflip are collected in Table V.

behave completely analogously and will therefore not be discussed sepa-
rately. All error bars are estimated by means of the jack-knife method,(18)

using usually 100 blocks.
We see that for small lattice sizes teff and rjack are in good agreement,

as they should be. For the largest lattice sizes our statistics are poorer and
deviations are visible. We attribute this mainly to the relatively large
statistical errors of rjack, which can be roughly estimated by varying the
number of blocks used for computing ejack. The more intuitively defined
flip times Tfli'P are an upper bound on the more properly defined Teff or Tjack.

Let us now turn to a discussion of the finite-size scaling behavior of
the autocorrelation times. As already mentioned in the introduction, based
on a random walk picture, one expects a power law,

Carroll et al.1288
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where <L> stands short for E or B. The argument goes as follows. For an
idealized flat multicanonical (or multibondic) distribution, in each update
step positive and negative energy changes AE (or bond-number changes AB]
are equally likely. A lattice sweep consists of V spin updates. Viewing AE
as the jumps of an uncorrelated one-dimensional random walk in energy
we would therefore expect that after one sweep, on the average, the total
energy change is ^/V AE. Consequently, after V sweeps the energy would
have changed, on the average, by an amount oc V AE, which is just the dis-
tance between the two peaks of the canonical energy distribution. In such
an idealized picture, ignoring correlations between the jumps AE as well as
boundary effects, one thus expects Te oc V* with a = 1.

For the energy, the behavior of Tflip in multicanonical and multibondic
simulations is compared in Fig. 2 for q = 4 and 5. For rf a similar com-
parison is shown in Fig. 3. In all cases we observe in the double-
logarithmic plots the expected linear behavior. The straight lines are linear

Fig. 3. Comparison of the effective autocorrelation times r°fl of the energy in multibondic
(mubo) and multicanonical (muca) simulations on a double logarithmic scale. The straight
lines show fits according to the Ansatz (15). The resulting exponents <eff are collected in Table V.
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Table V. Dynamical Exponents a Obtained from Fits
of Teff, Tjack, and Tflip According to the Ansatz (15)
in Multibondic (mubo) and Multicanonical (muca)

Simulations of the 3D (q-State Potts Model

<xf

ajack

aflip

q = 4

mubo

1.04(5)

1.02(8)

0.96(1)

muca

1.15(3)

1.37(9)

1.14(2)

9 = 5

mubo

1.09(2)

1.21(8)

0.98( 1 )

muca

1.26(2)

1.33(7)

1.11(1)

least-squares fits which yield the values of a collected in Table V. For the
multibondic algorithm we obtain as in two dimensions values around
a=1.0, while for the multicanonical simulations we find also in three
dimensions a larger value of a= 1.2 (which, however, is little smaller than
in two dimensions). Since the computational effort is roughly the same for
the two algorithms we can therefore conclude that, asymptotically for large
system sizes, also in three dimensions the multibondic algorithm is always
favorable.

The actual autocorrelation times for a given lattice size depend, of
course, also on the prefactor a in (15). This is the reason why at the very
strong first-order phase transition for q = 5 the multicanonical T'S in Figs. 2
and 3 are smaller than the multibondic T'S for small lattice sizes. Here the
crossover between the two algorithms happens around L = 20. At the
weaker first-order transition for q = 4, however, the autocorrelations of the
multibondic algorithm are smaller already for lattice sizes as small as
L=10. Qualitatively the same effect was also observed in two dimen-
sions.(12)

This behavior suggests that for q = 3 the multibondic algorithm should
be superior for all reasonable system sizes. Our data for L= 10 and 18
clearly confirm this claim. The results of the multicanonical simulations are
Tfck = 44.8(1.2) and 234.1(5.1) for L = 10 and 18, and in the multibondic
simulations we obtain jack = 25.03(56) and 77.2(2.8) for L = 10 and 18.
Already for the modest size L= 10 the multibondic algorithm is thus two
times faster than standard multicanonical simulations, and for L= 18 we
find already an improvement factor of about three.

In Fig. 4 we finally show for the multibondic algorithm a comparison
of the three autocorrelation times. We see that rf and tjack are almost
indistinguishable, as they should be. The flip times TfliP, on the other hand,
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Fig. 4. Comparison of the autocorrelation times Teff, tjack, and Tflip of the energy in multi-
bondic simulations on a double logarithmic scale. The straight lines show fits according to the
Ansatz (15). The resulting exponents af, afck, and aflip are collected in Table V.

are larger by roughly a constant factor. The constant factor is also reflected
in Table V by the fitted exponents a, which are roughly the same for all
three definitions of re. Since this is the case for both, q = 4 and q = 5, and
was also observed for the two-dimensional model, this seems to be a
generic feature of this heuristic definition.

Due to the improved performance of multicanonical and in particular
multibondic simulations we have been able to perform detailed finite-size
scaling analyses of the first-order phase transitions in the three-dimensional
(q-state Potts model with q > 3. This allowed us to determine high-precision
estimates of the transition temperature Bt, from fits to the power-law scaling
of the locations of the specific-heat maxima and energetic Binder-parameter
minima, and to confirm that the refined pseudo-transition temperatures
defined in ref. 20 exhibit only exponentially small finite-size corrections.
Another important quantity characterizing the strength of a first-order
phase transition is the interface tension aod between the ordered and

Multibondic Algorithm in 3D q-State Potts Model 1291



disordered phase. To estimate aod we used the histogram method(21) which
is based on the fundamental relation ^™"/^™nX oc exp(-2<7,,rfLrf-') dis-
cussed in the introduction. Since it is precisely this property of first-order
phase transitions which leads in canonical simulations to supercritical
slowing down with autocorrelation times that are exponentially large in the
system size, it is essential to use multicanonical or multibondic simulations
to exploit this relation. In fact, our results of 2o-,K/«0.02 for q = 4 and
2aol/&Q.Q5 for q = 5 imply that the largest system sizes considered in this
study have extremely long canonical autocorrelation times of the order of
107-108. In addition we also investigated the very peculiar finite-size scaling
behavior of the magnetic Binder cumulant at a first-order phase transi-
tion(22) and obtained for the first time clear evidence for multiplicative
logarithmic corrections in the scaling behavior. A detailed discussion of our
quite elaborate finite-size scaling analysis would be beyond the scope of
this article and will be reported separately.

5. CONCLUSIONS

We performed a very careful comparison of the dynamical behavior of
the multibondic and the multicanonical algorithm at the first-order phase
transition of the three-dimensional q-state Potts model with q = 4 and 5.
Our results show that the autocorrelation times in multibondic simulations
scale with the system size according to i oc V*, with a w l , in very good
agreement with the prediction of a simple random walk argument. For
multicanonical simulations we obtained an estimate of <x« 1.2. This implies
that, asymptotically for large system sizes, multibondic simulations are
always favorable.

For smaller systems the multibondic algorithm is found to be
increasingly more efficient than the multicanonical as q decreases for the
same lattice size, such that in the particular case of any high-precision
studies of the first-order phase transition of the three-dimensional 3-state
Potts model the multibondic algorithm is the ideal tool.
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